Министерство мелиорации и водного хозяйства СССР (Минводхоз СССР) | Ведомственные строительные нормы | ВСН 33-2.2.12-87 Взамен ВСН II-18-76 |
Мелиоративные системы и сооружения. Насосные станции. Нормы проектирования |
Примечание. Для удобства пользования принята следующая классификация насосных станций:
по подаче: малые насосные станции - до 1 м3/с вне зависимости от назначения и напора; средние - 1-10 м3/с; крупные - 10-100 м3/с и уникальные - свыше 100 м3/с;
по напору: низконапорные - при напоре до 20 м; средненапорные - от 21 до 60 м; высоконапорные - более 60 м.
Внесены В/О «Союзводпроект» | Утверждены приказом Министерства мелиорации и водного хозяйства СССР от 31.12.87 № 442 | Дата введения в действие 1 июля 1988 г. |
Примечания. 1. Автоматическими насосными станциями называются станции, пуск и остановка которых происходит без вмешательства человека, например, от уровня воды в нижнем или верхнем бьефе, или по расходу, давлению и т.д.
2. Автоматизированными насосными станциями называются станции, на которых нормальный пуск и остановка основных агрегатов производится дежурным персоналом, а аварийная остановка основных агрегатов и работа вспомогательных систем, обеспечивающих нормальную эксплуатацию насосной станции, происходит автоматически.
Мощность электродвигателя, кВт | 2-5 | 5-10 | 10-50 | 50-350 | 350 и более |
Коэффициент запаса, (Кзап.) | 1,5-1,3 | 1,3-1,15 | 1,15-1,1 | 1,1-1,05 | 1,05 |
Тип электродвигателя | Температурный коэффициент | |||
температура, °С | ||||
40 | 45 | 50 | 55 | |
Асинхронный | 0,95 | 0,90 | 0,85 | - |
Асинхронный типа 4а | - | 0,95 | 0,90 | 0,85 |
Синхронный | 0,95 | 0,875 | 0,75 | - |
при единичной подаче насосов более 1 м3/с - 25 м2 то же, для насосов типа ОПВ подачей до 3 м3/с - 30 м2 то же, 3,01 ... 15 м3/с - 45 м2 то же, более 15,01 м3/с - 60 м2 то же, для насосов типа «В» подачей до 3 м3/с - 30 м2 то же, 3,01 ... 15,00 м3/с - 60 м2 для насосов всех марок мощностью 25 ... 50 МВт - 140 м2 то же, мощностью 50 ... 160 МВт - 170 м2
Примечания. 1. Расчет обшей устойчивости против опрокидывания, как правило, следует выполнять для сооружений на скальных основаниях.
2. Величину деформаций основания необходимо определять для сооружений:
на глинистых основаниях - от всех нагрузок (без учета коэффициентов перегрузки);
на крупнообломочных и песчаных - только от временных нагрузок эксплуатационного периода.
«Гидротехнические сооружения» - СНиП 2.06.01-86;
«Нагрузки и воздействия на гидротехнические сооружения волновые, ледовые и от судов» - СНиП 2.06.04-82;
«Нагрузки и воздействия» - СНиП 2.01.07-85;
«Основная гидротехнических сооружений» - СНиП 2.02.02-85;
«Строительная климатология и геофизика» - СНиП 2.01.01-82;
«Определение расчетных гидрологических характеристик» - СНиП 2.01.14-83;
«Фундаменты машин с динамическими нагрузками» - СНиП II.19.79;
«Основания зданий и сооружений» - СНиП 2.02.01-83;
«Строительство в сейсмических районах» - СНиП II-7-81;
«Бетонные и железобетонные конструкции гидротехнических сооружений» - СНиП 2.06.08-87;
«Подпорные стены, проходные шлюзы, рыбопропускные и рыбозащитные сооружения» - СНиП 11.55.79.
6.22. При выборе расчетных схем и методики расчета гидротехнических сооружений, определении расчетных нагрузок и их сочетаний следует учитывать все возможные реальные случаи работы сооружений, которые могут возникнуть во время строительства и всего срока эксплуатации проектируемого сооружения. При этом строительные конструкции сооружения должны обеспечить надлежащую прочность и устойчивость сооружения при поярусном возведении протяженных (длинных) сооружений, возможность эксплуатации при незавершенном строительстве, изменение уровенного режима поверхностных и грунтовых вод в процессе эксплуатации, возможность отказа дренажных устройств и т.д.
6.23. Расчет на прочность и устойчивость сооружений IV класса разрешается выполнять только на основное сочетание нагрузок.
6.24. Учет динамических нагрузок от оборудования в сочетании с другими нагрузками устанавливается СНиП II-19-79 по проектированию фундаментов и несущих конструкций зданий и сооружений под машины с динамическими нагрузками.
6.25. Одними из основных нагрузок, определяющих напряженное состояние гидротехнического сооружения, являются контактные напряжения.
Для сооружений III и IV классов на скальных основаниях контактные напряжения следует определять по формулам внецентренного сжатия.
При определении контактных напряжений для сооружений на нескальных основаниях следует учитывать их показатель гибкости и модуль деформации основания.
6.26. Рекомендации по определению нормальных контактных напряжений:
для сооружений на скальных основаниях и для жестких сооружений с плоской подошвой на однородных нескальных основаниях, сложенных несвязанными грунтами с относительной плотностью Д < 0,5 - по формулам внецентренного сжатия;
для жестких сооружений при относительной плотности грунтов основания Д > 0,5 и плоском основании, а также для сооружений, имеющих подошву ломаного очертания, при любой плотности грунтов - по формулам внецентренного сжатия и по методу теории упругости с условным ограничением глубины сжимаемого слоя до 0,3 В для песчаных грунтов и 0,7 В - для глинистых грунтов. Для сооружений III и IV классов, возводимых на несвязных грунтах, и IV класса - на связных грунтах, нормальные контактные напряжения допускается определять только по формулам внецентренного сжатия.
6.27. При определении контактных напряжений с учетом гибкости сооружения допускается применять метод коэффициента постели и метод теории упругости с условным ограничением глубины сжимаемой толщи. При расчете сложных пространственных сооружений (здания насосных станций, водоприемники и т.д.) вместо решения пространственной задачи следует использовать решение плоской задачи, рассматривая независимо два взаимно перпендикулярных направления.
6.28. Боковое давление грунта следует определять в зависимости от условий работы конструкции и вида ее предельного состояния:
при расчетах устойчивости - принимая грунт в состоянии предельного равновесия (давление грунта передается на расчетную поверхность);
при расчетах прочности, перемещений и деформаций - принимая грунт в допредельном состоянии (давление передается непосредственно на поверхность контакта грунта с сооружением).
6.29. Предельное значение бокового давления грунта, соответствующее стадии образования поверхности обрушения (активное давление) или поверхности выпора (пассивное давление), следует, как правило, определять методом предельного равновесия с учетом трения грунта по расчетной поверхности и сцепления.
6.30. Боковое давление грунта, находящееся в допредельном напряженном состоянии следует, как правило, определять как сумму составляющих:
бокового давления в состоянии покоя от собственного веса грунта и нагрузок на его поверхность;
дополнительного реактивного давления при перемещении контактной поверхности в сторону грунта.
6.31. При расчете гидротехнических сооружений IV класса, а также при предварительных расчетах сооружений I, II и III классов допускается пользоваться упрошенными формулами и графиками.
6.32. Волновые нагрузки следует учитывать в расчетах устойчивости и прочности, а также для определения верха сооружений, расположенных на открытых водоемах, а также на реках и каналах, расчетный расход которых превышает 100 м3/с.
6.33. Расчетные нагрузки на перекрытия машинных залов, монтажных площадок, служебных помещений и мостиков следует определять на основании рационально запроектированных схем монтажа и раскладки монтируемого оборудования. Перекрытие монтажных площадок должно быть проверено на въезд транспортных средств (автомашины, трейлеры), если в здании станции установлено оборудование единичным весом более 0,5 т.
6.34. При расчете опорных конструкций агрегатов вертикального исполнения кроме массы электродвигателя следует учитывать вес вращающихся частей насоса и осевое давление воды.
6.35. При установке электродвигателей мощностью более 2000 кВт проверять прочность рамных и балочных опор на динамический крутящий момент, возникающий при токах короткого замыкания.
6.36. Опорные балки и рамы под оборудование мощностью более 1000 кВт необходимо проверять на резонанс; частота собственных колебаний фундамента должна отличаться от колебаний возмущающих сил не менее, чем на 20 ÷ 30 %.
6.37. Объемный вес бетонов и железобетонов сооружений I, II и III классов следует принимать по данным испытаний бетона, состав которого подобран на заполнителях карьера строительства проектируемого объекта. На предварительных стадиях проектирования и при расчетах сооружений IV класса объемный вес бетона разрешается принимать равным 2,2 т/м3, а железобетона - 2,4 т/м3.
Гидравлические расчеты
6.38. Гидравлические расчеты, а в необходимых случаях исследования водозаборных, водовыпускных и водосбросных сооружений, аванкамер, проточного тракта в пределах зданий насосных станций, водоводов (каналы, лотки, трубопроводы) и вентиляционных систем следует выполнять для:
определения потерь напора (местных и по длине водоводов) и экономичного диаметра (габариты, сечения) водовода;
назначения габаритов вентиляционных каналов и выбора оборудования (вентиляторов, заслонок, фильтров и т.д.);
определения времени и габаритов устройств, применяемых для опорожнения емкостей и трубопроводов насосных станций;
определения регулирующей способности комплекса сооружений водовод-насосы-водовод и необходимости строительства дополнительной регулирующей емкости (расчет вести исходя из допустимой частоты включения-отключения основных насосов и допустимой скорости сработки емкости);
составления оптимальных схем маневрирования затворами при пуске осевых и диагональных насосов на закрытый затвор;
назначения очертаний и конструкций русловых сооружений и береговых открылков, раздельных стен и бычков, конструкций крепления дна, откосов и т.д.;
установления вероятного режима переформирования русла реки или водохранилища в створе водозаборного сооружения; оценка возможности общего понижения уровня воды в источнике в связи с увеличением водоотбора или размывам русла реки;
определения ширины водозаборного и водосливного фронтов гидротехнических сооружений, отметок гребня водослива и профиля водосливной поверхности;
выбора оптимального режима работы и конструкций сопрягающих сооружений;
обоснования формы и габаритов проточной части сооружений (сифонов, всасывающих труб насосов, всасывающих и напорных трубопроводов, аванкамер и т.д.);
определения режима работы подводящих и отводящих каналов при включении и отключении насосов (волны пуска и остановки);
определения высотной компоновки насосов (для обоснования правильности выбора и установки насоса по отношению к уровням воды в нижнем бьефе) должен быть построен график совместной работы насосов на один трубопровод; на график необходимо нанести характеристики насосов (Q - H; Q - η; Q - ∆hдоп; Q - N) и потерь напора в трубопроводах (для новых и старых труб).
Гидравлический удар
6.39. Определение величины гидравлического удара необходимо для расчета водоводов и трубопроводной арматуры на прочность и плотность, а также для назначения мероприятий для снижения величины гидравлического удара. Гидравлический удар может сопровождаться повышением давления сверх рабочего и понижением давления ниже атмосферного (вакуум).
6.40. Гидравлический удар необходимо рассчитывать для всех насосных станций, имеющих напорные трубопроводы длиной свыше 600 м на следующие возможные расчетные случаи:
гидравлический удар при остановке одного из насосов, оборудованного обратным клапаном, при нормальной работе остальных насосов;
то же, но при отсутствии обратного клапана (проверяются параметры реверса);
то же, при внезапной остановке всех насосов, оборудованных запорными устройствами с гидроприводном или иным независимым приводом (для определения режима закрытия затвора);
то же, при отсутствии запорных устройств (определение параметров удара и реверса);
то же, при внезапной остановке всех насосов, оборудованных обратными клапанами.
6.41. В тех случаях, когда из-за гидравлического удара необходимо увеличить толщины оболочки трубопроводов, расчеты следует повторить при условии применения мероприятий по снижению величины удара. В качестве таких мероприятий следует рассмотреть установку по трассе трубопровода клапанов для выпуска и защемления воздуха, устройств для выпуска воды, установку по трассе трубопровода (отсечных) обратных клапанов, водовоздушных баков, уравнительных башен (колонн), диафрагм, сбросов воды через байпасы или основные насосы, установку предохранительной малоинерционной трубопроводной арматуры.
6.42. При расчете гидравлического удара в водоводах, оборудованных неуправляемыми обратными клапанами, необходимо учитывать возможность того, что клапаны на трассе водовода могут закрываться в самой невыгодной последовательности и что время закрытия непредсказуемо (клапан может быть чем-то заклинен и закроется при максимальной скорости обратного течения воды).
Расчет пуска и остановки насосных агрегатов
6.43. В процессе проектирования мелиоративных насосных станций необходимо производить следующие виды расчетов:
проверку устойчивости работы центробежных насосов типа Д с малыми коэффициентами быстроходности, имеющих неустойчивые (нестабильные) характеристики 0-Н (характеристика 0-Н имеет восходящую и нисходящую ветви, то есть максимальные значения напора имеют место при 0 ≠ 0);
проверку пуска центробежного насоса на обратный клапан или на опорожненный трубопровод; проверку мощности электродвигателя (особенно возможность вхождения электродвигателя в синхронизм);
проверку пуска осевого или диагонального насоса на опорожненный трубопровод, который заканчивается сифоном или водовыпускным сооружением со сливными отверстиями (проверяется возможность работы насосного агрегата при повышенной величине напора, в том числе возможность вхождения в синхронизм);
проверку пуска осевого или диагонального насоса на обратный клапан при заполненном водой напорном трубопроводе;
определение величины и продолжительности реверса, сбрасываемого расхода и момента сопротивления при внезапной или плановой остановке насосного агрегата без автоматически действующей трубопроводной арматуры (при сбросе воды через насос).
Технико-экономические расчеты
6.44. При сравнении вариантов технических решений по сооружениям насосных станций необходимо пользоваться методом сравнительной экономической эффективности. Пользуясь этим методом, следует обосновать:
выбор створа водозабора и места расположения здания насосной станции на тракте водоподачи; определение оптимальной длины наиболее дорогих сооружений - напорных трубопроводов и магистральных каналов в глубоких выемках или на искусственных основаниях;
обоснование числа зон качания;
обоснование количества и типа основных агрегатов, в том числе резервных;
выбор материала, числа нитей и диаметра напорных, всасывающих и самотечных трубопроводов;
определение оптимальных размеров и конструктивных решений основных и вспомогательных сооружений;
обоснование необходимости освоения новых видов оборудования материалов и конструкций;
обоснование необходимости выделения пусковых комплексов, их параметров и времени строительства.
6.45. Показателем сравнительной экономической эффективности капитальных вложений является минимум приведенных затрат, определенных по формуле
где За - приведенные затраты по одному из рассматриваемых вариантов «а»;